Electronique organique

L’utilisation de matériaux organiques pour des applications électroniques offre une solution plus écologique et moins onéreuse. Les polymères et les petites molécules organiques apportent des propriétés uniques aux dispositifs électroniques en comparaison au technologie à base de silicium comme une plus grande légèreté, une flexibilité et des procédés de fabrication à faibles coûts. Nos activités s’étendent de la modélisation moléculaire  à la fabrication de dispositifs en passant par la synthèse de ces nouveaux matériaux .

Applications

  • Les Diodes Organiques Électroluminescentes  : OLED et les dispositifs hybrides (HYLED) développés sur des substrats rigides (verre, métaux) ou flexible (plastique, textile) transparents ou opaques.  

  • Couches minces photovoltaïques :  Troisième génération de PV incluant les ‘Dye-Sensitized Solar Cells” (DSSC), Organic Solar Cells (OPV), et les pérovskites  

  • La fonctionnalisation de surface pour adapter les propriétés physico-chimiques des surfaces.

  • Lithographie d’électrodes transparentes et flexibles. 

  • L’encapsulation de couches minces et films barrières
  • Expertises

  • Modélisation moléculaire en collaboration étroide avec le service de  Laboratory for Chemistry of Novel Materials)

  • Le développement de nouveaux matériaux (polymères, petites molécules organiques) comme films minces déposables soit par procédés sous vide, soit par voies humides. 

  • La caractérisation morphologique, optique, électrique et des propriétés de transport des films minces. 

  • La fabrication de dispositifs opto-électroniques (OLED, OPV). 

  • Le développement de nouvelles structures pour les dispositifs électroniques (épaisseurs des couches minces, couches de transport de trous, électrons,…).

  • L’optimisation et la validation de protocoles de fabrication de nouveaux substrats transparents (verre, plastiques), opaques (métaux, papiers), rigides ou flexibles, 3D (textiles) pour de nouvelles application. 

  • L’étude de vieillissement de cellules solaires photovoltaïques. 

  • Le développement de nouvelles électrodes sans Indium. 

  • L’encapsulation de dispositifs pour les protéger de l’eau et de l’air. 

  • La caractérisation des performances des dispositifs : (1) OLED : Efficacité en courant (Cd/A), Efficacité en puissance (lm/Watt), luminance (Cd/m2), propriétés spectrales (2) OPV : Tension à circuit ouvert (Voc), Courant de court-circuit (Jsc), Fill Facteur (FF), Efficacité de conversion de puissance (PCE) sous illumination (simulateur solaire). 
  • Contact

    Plus d’information, contactez-nous 

    Publications / Brevets

    [1]  Chemical and physical effects of the carrier gas on the atmospheric pressure PECVD of fluorinated precursors, Hubert, J., Vandencasteele, N., Mertens, J., Viville, P., Dufour, T., Barroo, C., Visart de Bocarmé, T., Lazzaroni, R., Reniers, F. Plasma Processes and Polymers, (2015)

    [2] Towards a Unified Description of the Charge Transport Mechanisms in Conductive Atomic Force Microscopy Studies of Semiconducting Polymers, D. Moerman, N. Sebaihi, S.E. Kaviyil, P. Leclère, R. Lazzaroni, and O. Douhéret. Nanoscale 6 (2014) 10596-10603.

    [3] Multiscale Modelling of Organic and Hybrid Photovoltaics”, edited by D. Beljonne and J. Cornil, Topics in Current Chemistry, Vol. 352 (Springer, 2014), 400 pages.

    [4] Ageing of organic photovoltaic devices in Benin environment (South-Sudanese climate), M. Agbomahena et al.  Solar Energy Materials and Solar Cells, 117, 2013, 93–97.

    [5] Macrocyclic regioregular poly(3-hexylthiophene): from controlled synthesis to nanotubular assemblies; O. Coulembier, G. Deshayes, M. Surin, J. De Winter, F. Boon, C. Delcourt, Ph. Leclère, R. Lazzaroni, Ph. Dubois; Polym. Chem., 4 (2013) 237-241.

    [6] OLED Light Extraction Improvement with Surface Nano-micro Texturation Based on Speckle Lithography, Loicq, J.; Fleury-Frenette, K.; Viville, P.; Lazzaroni, R.; Kanaan, H.; Guaino., P. in “Physics and Optics of OLEDs“, SPIE Photonics Europe 2012.

    [7] Large white organic light-emitting diode lighting panel on metal foils”, Ph. Guaino et al. Journal of Photonics for Energy, Vol. 1, 2011, 0110151 – 0110158.

    [8] Efficient bulk heterojunction photovoltaic cells with a pre-organized poly(3-hexylthiophene) phase”, D. Moerman et al., APPLIED PHYSICS LETTERS 99, 093303 (2011).

    [9] Substrate-Induced Crystal Plastic Phase of a Discotic Liquid Crystal, Gbabode, G.; Dumont, N.; Quist, F.; Schweicher, G.; Moser, A.; Viville, P.; Lazzaroni, R.; Geerts, Y. H. Adv. Mater. 2012, 24, 658-662.

    [10] Nanoscale investigation of the electrical properties in semiconductor polymer/carbon nanotube hybrid materials, S. Desbief, N Hergué , O. Douhéret , M. Surin , Ph. Dubois, Y. Geerts, R. Lazzaroni, Ph. Leclère; Nanoscale, 4 (2012) 2705-2712.

    [11] Novel regioregular poly(3-hexylthiophene)-based polycationic block copolymers, H. Tran Nguyen, O. Coulembier, K. Gheysen, J.C. Martins, Ph. Dubois; Macromolecules, 45 (2012) 9547–9550.

    [12] Synthesis of fluorine doped zinc oxide by reactive magnetron sputtering, X. Noirfalise, T. Godfroid, G. Guisbiers, R. Snyders, Acta Materialia 59 (2011) 7521

    [13] Solid-State Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units, P. Brocorens, A. Van Vooren, M.L. Chabinyc, M.F. Toney, M. Shkunov, M. Heeney, I. McCulloch, J. Cornil, R. Lazzaroni; Advanced Materials, 21 (2009) 1193-1198.